terça-feira, 15 de outubro de 2013

Não devemos dormir num quarto com plantas. Isto significa que não é saudável dormir numa floresta?



Durante o dia, as plantas transformam a luz solar em energia química, num processo designado por fotossíntese. Um dos seus produtos da reação é o oxigénio (O2). De noite, o processo é inverso e as plantas absorvem o oxigénio e libertam dióxido de carbono (CO2). Isto explica por que razão é que retiram as flores e as plantas das enfermarias dos hospitais durante a noite, dado que se pensa que as pessoas que já estão doentes não precisam de disputar o oxigénio com as plantas, embora até agora ninguém tivesse provado que as plantas fazem mal à nossa saúde. Mas quaisquer insetos que estejam escondidos nas flores podem fazê-lo, o que poderá ser uma boa razão para não tê-las junto de si, quando está a dormir.
Se está a pensar em dormir numa floresta e está preocupado com a possibilidade de ter que se deparar com a falta de oxigénio, não se preocupe. Existe tanto oxigénio no ar que ele é suficiente para as plantas e para os seres humanos. Portanto, durma descansado.

Fonte: Heiney, Paul (2007) Será que os Gatos têm Umbigos?, Mem Martins: Publicações Europa-América

sábado, 12 de outubro de 2013

Nobel da Química de 2013 para modelização por computador de reações químicas

Os laureados deste ano conseguiram “aproveitar o melhor de dois mundos”, combinando física clássica e quântica para simular de forma realista as mais complexas interações moleculares.
“O Prémio Nobel da Química de 2013 foi para Martin Karplus (Universidade de Estrasburgo, França, e Universidade de Harvard, EUA), Michael Levitt (Universidade de Stanford, EUA) e Arieh Warshel (Universidade da Califórnia do Sul, EUA), “pelo desenvolvimento de modelos multiescala para sistemas químicos complexos", anunciou ontem em Estocolmo a Real Academia Sueca das Ciências.
Martin Karplus, austríaco e norte-americano, nasceu em 1930 e é bioquímico; Michael Levitt, britânico e norte-americano, é biofísico e nasceu na África do Sul em 1947; Arieh Warshel, israelita e norte-americano, é químico e bioquímico e nasceu em 1940.
Hoje em dia, a simulação das mais complexas reações químicas no computador é prática corrente. Mas isso não foi sempre assim. De facto, os três laureados “construíram as bases dos potentes programas [informáticos] que são [hoje] utilizados para perceber e prever os processos químicos”, salienta a mesma entidade em comunicado. Como, por exemplo, a ação de um potencial medicamento sobre o seu alvo no corpo, que permite hoje desenhar moléculas com propriedades terapêuticas antes de as testar experimentalmente.
No passado, os químicos construíam modelos das moléculas que estudavam com bolas a representar os átomos e arames para as ligações entre átomos (basta lembrar-se do famoso modelo tridimensional da molécula de ADN, construída nos anos 1950, à maneira de um “mecano”, por Francis Crick e James Watson no seu laboratório de Cambridge…).  E quando se tratava de simular moléculas no computador, os software disponíveis faziam-no conforme as leis da física clássica ou as da física quântica (a física do mundo dos átomos) - mas não as de ambas ao mesmo tempo, explica ainda a academia sueca.
Por um lado, os programas informáticos clássicos permitiam calcular e processar grandes moléculas químicas, mas só as mostravam no seu estado de “repouso”, o que excluía à partida a simulação de reações químicas, que são fenómenos dinâmicos que demoram uma fração de milissegundo e onde a configuração das moléculas se altera radicalmente. Já quando se tratava de simular reações químicas, era a física quântica a entrar em cena – mas aí, a potência de cálculo necessária era tal que só era possível fazer estas simulações em moléculas pequenas, o que excluía, logo à partida, as grandes moléculas biológicas que são as proteínas. Os trabalhos dos laureados deste ano permitiram aproveitar “o melhor de dois mundos”, com “Newton e a sua maçã a colaborarem com Schrödinger e o seu gato”, lê-se ainda no comunicado da academia.
Em 1970, Warshel desembarcou no laboratório de Karplus, vindo do Instituto Weizmann em Israel. No potente computador do seu instituto de origem, Warshel, juntamente com Levitt, tinha criado um programa capaz de simular moléculas – qualquer molécula, ate às maiores – conforme as leis da física clássica. Por seu lado, Karplus e a sua equipa eram especialistas do desenvolvimento desoftware capaz de simular reações químicas com base na física quântica.
Karplus e Warshel desenharam então um novo tipo de programa, no qual a física quântica era utilizada quando se tratava de simular o comportamento de certas porções das moléculas, enquanto a física clássica tomava conta do resto. Para dar um exemplo atual, nas simulações da forma como um novo medicamento se liga à sua proteína-alvo no nosso organismo, o computador executaria cálculos quânticos apenas nos átomos da proteína-alvo que interagem diretamente com o medicamento, fornecendo a resolução máxima nessa localização.
Dois anos mais tarde, Warshel e Levitt juntaram-se novamente. Levitt interessava-se pelas moléculas biológicas – sobretudo pelas enzimas, essenciais à química dos organismos vivos – e os dois cientistas decidiram simular reações enzimáticas. Em 1976, publicaram o primeiro modelo por computador deste tipo de reação química. “O seu programa era revolucionário porque podia ser utilizado com qualquer tipo de molécula. O tamanho deixava de ser um obstáculo”, escreve a academia.
"A força dos métodos desenvolvidos por Martin Karplus, Michael Levitt e Arieh Warshel reside no seu carácter universal. Podem ser usados para estudar todo o tipo de química, das moléculas da vida aos processos químicos industriais." Um dos sonhos assumidos de Levitt é simular a totalidade de um organismo vivo ao nível molecular. E segundo a academia, "só o futuro pode decidir" se as poderosas ferramentas desenvolvidas pelos laureados irão um dia permitir concretizar esse sonho.”

quinta-feira, 10 de outubro de 2013

Nobel da Física de 2013 para o bosão de Higgs

Prémio distingue o belga François Englert e o britânico Peter Higgs, dois dos físicos teóricos que, há cerca de 50 anos, postularam a existência de uma partícula elementar que confere massa a todas as outras.


"François Englert, da Universidade Livre de Bruxelas (Bélgica), e Peter Higgs, da Universidade de Edimburgo (Reino Unido), partilham este ano o Prémio Nobel da Física “pela descoberta teórica de um mecanismo que contribui para a compreensão da origem da massa das partículas subatómicas, e cuja existência foi recentemente confirmada, através da descoberta da partícula fundamental prevista, pelas experiências ATLAS e CMS do [acelerador de partículas] LHC do CERN”, anunciou em Estocolmo a Real Academia das Ciências Sueca.
Em 1964, Englert e o seu colega Robert Brout (entretanto falecido), por um lado, e Higgs, pelo outro, teorizaram de forma independente que devia existir uma partícula subatómica – que se tornaria famosa sob o nome de bosão de Higgs –, capaz de dar massa a todas as outras partículas previstas pelo chamado Modelo-Padrão da física das partículas, que descreve a composição, a nível subatómico, do mundo que nos rodeia. E, passadas quase cinco décadas, o bosão de Higgs foi finalmente avistado no LHC – o grande o acelerador de partículas do Laboratório Europeu de Física de Partículas (CERN), perto de Genebra, na Suíça – e a sua existência efectiva anunciada em Julho de 2012. A detecção do bosão de Higgs permitiu completar o elenco das partículas previstas pelo Modelo-Padrão.
“Segundo o Modelo-Padrão”, explica em comunicado emitido esta terça-feira pela Real Academia das Ciências Sueca, “tudo, das flores aos planetas, é composto por apenas um punhado de tijolos de construção: as partículas de matéria. Estas partículas são governadas por partículas de força que garantem que tudo no mundo funciona como deve.
Neste modelo, o bosão de Higgs ocupa uma posição central, uma vez que, sem esta partícula, nós próprios não existiríamos. Trata-se de uma partícula que está presente em todo o espaço e é nas interacções com ela que as outras partículas subatómicas adquirem a sua massa.Mas o bosão de Higgs é extremamente difícil de “apanhar”: só se manifesta de forma extremamente fugidia em experiências que põem em jogo os feixes de partículas mais potentes e os detectores de partículas mais sensíveis que existem no planeta. E de facto, se foram precisos apenas alguns cérebros para imaginar o bosão, a sua detecção exigiu anos de esforços por parte dos cerca de seis mil cientistas que participam nas duas complexíssimas experiências do CERN, ATLAS e CMS, concebidas para detectar o bosão de Higgs na “selva” de partículas criadas nas colisões de protões de altíssima energia do LHC.
Num comunicado que chegou às redacções instantes depois do anúncio do Nobel, o CERN deu os parabéns aos dois laureados. “Estou emocionadíssimo com a atribuição do Prémio Nobel deste ano à física das partículas”, declarou Rolf Heuer, director-geral do CERN, citado no documento. “A descoberta do bosão de Higgs no CERN, no ano passado, que valida o mecanismo de Brout-Englert-Higgs, marca o culminar de décadas de esforço intelectual por parte de muitas pessoas no mundo.”    
Mas o bosão de Higgs não é de todo o fim da história. O Modelo-Padrão apenas descreve a matéria visível que nos rodeia, mas estima-se que cerca de 95% do Universo é constituído por matéria escura, totalmente invisível, e energia escura."